The Enhanced Catalytic Performance and Stability of Rh/γ-Al2O3 Catalyst Synthesized by Atomic Layer Deposition (ALD) for Methane Dry Reforming
نویسندگان
چکیده
Rh/γ-Al₂O₃ catalysts were synthesized by both incipient wetness impregnation (IWI) and atomic layer deposition (ALD). The TEM images of the two catalysts showed that the catalyst from ALD had smaller particle size, and narrower size distribution. The surface chemical states of both catalysts were investigated by both XPS and X-ray Absorption Near Edge Structure (XANES), and the catalyst from IWI had higher concentration of Rh3+ than that from ALD. The catalytic performance of both catalysts was tested in the dry reforming of methane reaction. The catalyst from ALD showed a higher conversion and selectivity than that from IWI. The stability testing results indicated that the catalyst from ALD showed similar stability to that from IWI at 500 °C, but higher stability at 800 °C.
منابع مشابه
Investigation of the catalytic performance and coke formation of nanocrystalline Ni/SrO-Al2O3 catalyst in dry reforming of methane
In this study, nickel catalysts supported on mesoporous nanocrystalline gamma alumina promoted by various strontium contents were prepared by the impregnation method and employed in dry reforming of methane (DRM). The prepared catalysts were characterized using N2 adsorption (BET), temperature-programmed reduction and oxidation (TPR,) and oxidation (TPDTPO), X-ray diffraction (XRD), and scannin...
متن کاملAn Investigation into the Effect of Hydrotalcite Calcination Temperature on the Catalytic Performance of Mesoporous Ni-MgO-Al2O3 Catalyst in the Combined Steam and Dry Reforming of Methane
Several mesoporous nickel-based catalysts with MgO-Al2O3 as the catalyst support were prepared using a co-precipitation method at a constant pH. The supports were prepared from the decomposition of an Mg-Al hydrotalcite-like structure which had already been prepared with Mg/Al=1. Prior to impregnating 10 wt.% nickel on the supports, the precursor was decomposed at several ...
متن کاملEffect of K2O on the catalytic performance of Ni catalysts supported on nanocrystalline Al2O3 in CO2 reforming of methane
CO2 reforming of methane (CRM) over unpromoted and potassium promoted Ni/Al2O3 catalysts was studied. The catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD), N2 adsorption (BET), temperature programmed reduction (TPR), temperature programmed oxidation (TPO) and scanning electron microscope (SEM) techniques. The obtained results showed that addition of K2...
متن کاملMethane oxy-steam reforming over a highly efficient Ni/Al2O3 nanocatalyst prepared by microwave-assisted impregnation method
An alumina-supported nickel catalyst was prepared by impregnation of Ni2+ solution onto mesoporous alumina under microwave irradiation (denoted as M-Ni/Al2O3). For comparison, a catalyst with the same nickel content was prepared by conventional impregnation method (denoted as UM-Ni/Al2O3). Both M-Ni/Al2O3 and UM-Ni/Al2O3 catalysts were applied to the syngas (H2 + CO) production by methane oxy-s...
متن کاملAn in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst.
Ni/Al2O3, Co/Al2O3 and bimetallic Ni(Co)/Al2O3 catalysts were prepared using an impregnation method and employed in CO2 dry reforming of methane under coking-favored conditions. The spent catalysts were carefully characterized using typical characterization technologies and inelastic neutron scattering spectroscopy. The bimetallic catalyst exhibited a superior activity and anti-coking performan...
متن کامل